1. Inversions

If σ is a permutation of $[n]$, say that a pair (i, j) is an inversion of σ if $1 \leq i < j \leq n$ and $\sigma_i > \sigma_j$: that is, if the number in position i exceeds the number in position j.

Example 1.1. The permutation $\sigma = [3142]$ has three inversions: $(1, 2)$, $(1, 4)$, and $(3, 4)$.

The length of a permutation is, by definition, the number of inversions in σ, written $l(\sigma)$.

We can also count the number of inversions for which the left-hand position is fixed: for $1 \leq i \leq n$, let m_i be the number of j with $i < j \leq n$ for which (i, j) is an inversion. Clearly $m_n = 0$.

Example 1.2.
- For $\sigma = [3142]$, $m_1 = 2$, $m_2 = 0$, $m_3 = 1$ and $m_4 = 0$.
- For $\sigma = [123\cdots n]$, clearly $m_i = 0$ for all i, $1 \leq i \leq n$.
- For $\sigma = [n, n-1\cdots 321]$, we have $m_i = n - i$ for $1 \leq i \leq n$.

It is not hard to check that $0 \leq m_i \leq n - i$ for each i, $1 \leq i \leq n$. In fact, every inversion sequence (m_1, \ldots, m_n) is possible:

Theorem 1.3. For a fixed integer $n \geq 1$, suppose (m_1, \ldots, m_n) are integers satisfying $0 \leq m_i \leq n - i$ for $1 \leq i \leq n$. Then there is a unique permutation σ of $[n]$ for which (m_1, \ldots, m_n) is its inversion sequence.

Proof. We can check that there are exactly $n!$ such sequences, so it is enough to show that there is some permutation σ having given numbers (m_1, \ldots, m_n) as its inversion sequence. The uniqueness follows by counting.

Given (m_1, \ldots, m_n), make a permutation recursively by letting $S = [n]$, $i = 1$, and then

- If $S = \emptyset$, stop. Otherwise,
- Let σ_i be the $m_i + 1$st element of the set S, written in increasing order.
- Delete the number σ_i from the set S.
- Increase i by one and repeat.

(The reader needs to check that the resulting σ really is a permutation, and (m_1, \ldots, m_n) is its inversion sequence.)

2. Generating functions

With this in mind, we can make a generating function for the permutations of $[n]$ of a given length. By Theorem 1.3, the number of permutations of length d is just the number of solutions to

$$m_1 + m_2 + \cdots + m_n = d,$$
where each \(m_i \) is an integer and \(0 \leq m_i \leq n - i \). By the multiplication principle for ordinary generating functions, this is the coefficient of \(t^d \) in the product
\[
(1 + t + \cdots + t^{n-1})(1 + t + \cdots + t^{n-2})\cdots (1 + t + t^2)(1 + t)(1).
\]
That is, if we let \(S_n \) be the set of all permutations of \([n]\), we get the generating function
\[
\sum_{\sigma \in S_n} t^{l(\sigma)} = \prod_{i=1}^{n} \sum_{j=0}^{n-i-1} t^j
= \prod_{i=1}^{n} \frac{1 - t^{n-i}}{1 - t}
= \frac{1}{(1 - t)^n} \prod_{i=1}^{n} (1 - t^i).
\]
Finally, notice that this is really a polynomial, and that if you evaluate either side at \(t = 1 \), you get \(n! \).

Example 2.1. For \(n = 3 \), this is \((1 + t + t^2)(1 + t) = 1 + 2t + 2t^2 + t^3\). For \(n = 4 \), we get the polynomial
\[
1 + 3t + 5t^2 + 6t^3 + 5t^4 + 3t^5 + t^6.
\]