### Math 9162 Summer 2016

## Topics in Algebraic Geometry: Complex Algebraic Curves

This page will be updated, use the "refresh/reload" button.

**Instructor:**
Tatyana Barron

**Course description:** plane curves, singularities, divisors, Bezout's theorem, genus formula,
Riemann-Roch theorem and applications, additional topics if time permits.

**Lectures:** MW 1:00-3:00 pm, F 1:00--2:00 pm, from Wed. May 25 to Fri. July 15, in MC 108.

**Office hours:** Fri 2:00-3:00, in MC 247 (last day: July 22).

There will be two homework assignments (35% each, due on June 20 and July 11) and a **final exam**
on Tuesday July 19, 1-3 pm, in MC 108, (30%).

A first course in complex analysis (e.g. UWO Math 3124A/B) will be assumed.

We shall use the following **references:**

- Rick Miranda
*"Algebraic curves and Riemann surfaces"* AMS, 1995 (a copy is on 1 day reserve at Taylor library)
- Frances Kirwan
*"Complex algebraic curves"* Cambridge Univ. Press, 1992 (a copy is on 1 day reserve at Taylor library)

There are also other useful sources, including

- Phillip Griffiths
*"Introduction to algebraic curves"* AMS, 1989
- Hitchin's notes from an undergraduate course on algebraic curves:
pdf
- I. Dolgachev
*"Classical algebraic geometry"* (accessible online through the library website)